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Nearly symmetric and nearly baroclinic
instabilities in the presence of diffusivity.

Part 1. Growth rate patterns
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Computations are performed to examine the instabilities of baroclinically sheared
Eady basic flows with respect to banded normal-mode perturbations in three-
dimensional space in the presence of eddy diffusivity with two (free-slip and non-
slip) types of boundary conditions. The non-dimensional model system contains
four external parameters: the Richardson number, the Ekman number, the Prandtl
number and the ratio between inertial and buoyancy frequencies. The solutions are
controlled mainly by the first three parameters. Growth rate patterns are computed
for unstable modes as functions of the horizontal wavelength, l, and tilt angle α of
the band orientation with respect to the basic shear (measured negative clockwise
from the basic-shear direction). It is found that the main growth rate pattern (for
non-propagating modes with respect to the middle-level basic flow) has only one
maximum unless the Ekman number is sufficiently small. The growth rate pattern
obtained with the free-slip boundary conditions has a slightly larger global maximum
and is more symmetric with respect to the symmetric axis in the (l, α) space than
that obtained with the non-slip boundary conditions. When the Richardson number
is increased from 0.25 to 1.0, the maximum growth rate decreases and the associated
instability changes gradually from a nearly symmetric type to a nearly baroclinic
type as manifested by the continuous increase of l (from mesoscale to synoptic scale)
and continuous change of α (from nearly zero to nearly −90◦). When the Ekman
number is sufficiently small, the main growth rate pattern can have two local maxima
if the Richardson number is within a subrange 0.8 < Ri < 1.0. One of the local
maxima is near the symmetric axis and the other is near the baroclinic axis in the
wavenumber space. When the Richardson number increases through a transitional
value in the subrange, the global maximum growth rate decreases continuously but
the maximum point jumps from one local maximum to the other and the associated
instability switches from a nearly symmetric type to a nearly Eady baroclinic type.
The subrange depends on the smallness of the Ekman number and it diminishes as
the Ekman number increases to 0.0025 (for the non-slip case). The computed growth
rates and (l, α) are compared with the nearly inviscid results of Miller & Antar and
the inviscid results of Stone.

1. Introduction
One of the important stability problems in geophysical fluid dynamics, the

instabilities of the Eady baroclinic basic state in three-dimensional space, has been
studied by Stone (1966, 1970, 1972) and Tokioka (1970). According to Stone (1966,
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1970), when the Richardson number is in the range 1 >Ri > 0.84, the inviscid growth
rates have two local maxima in the wavenumber space: one is at the infinite point
of the symmetric axis associated with the classic symmetric instability (Fjortoft
1944) and the other is on the baroclinic axis associated with the classic baroclinic
instability (Eady 1949). This feature was interpreted as the coexistence of the two
types of instability. The global maximum is the baroclinic one if 1>Ri > 0.95, and
the symmetric one if 0.95 >Ri > 0.84. Thus, the instability associated with the global
maximum point switches from one type to the other when Ri changes through the
transitional value of Ri∗ = 0.95. When the Richardson number becomes smaller than
0.84, the baroclinic local maximum degenerates into a saddle point and, thus, the
only maximum is the symmetric one until Ri becomes smaller than 1/4 and the classic
Kelvin–Helmholtz instability becomes dominant. Thus, as summarized by Stone
(1970), the largest growth rate is associated with the Kelvin–Helmholtz instability if
1/4 > Ri > 0, with the symmetric instability if Ri∗ > Ri > 1/4, and with the baroclinic
instability if Ri > Ri∗, where Ri∗ = 0.95 is the transitional Richardson number for
the inviscid instabilities.

The destabilization effects of double diffusivities (characterized by non-unity Prandtl
number) on the symmetric instability were discovered by McIntyre (1970), who
demonstrated the dependence of the critical Richardson number on the Prandtl
number even in the limit when the diffusivities approach zero; that is, the critical
Richardson number becomes gradually higher than the classic value (that is, Ri = 1
for inviscid symmetric instability) as the Prandtl number moves away from unity.
By relaxing the symmetric constraint and allowing the perturbation bands to have a
small horizontal angle with respect to the basic shear, the analysis of Busse & Chen
(1981) indicated that in the presence of double diffusivities the maximum critical
Richardson number occurs away from the pure symmetric axis in the wavenumber
space. Since their analysis was based on the first-order truncation of an expansion in
the zonal wavenumber (associated with a small angle of the bands with respect to the
basic shear), Busse & Chen could not quantify the increase of the critical Richardson
number as a function of the Prandtl number and, in particular, they could not obtain
a result for unity Prandtl number (Pr = 1).

Weakly unstable viscous modes were obtained in three-dimensional space by Miller
& Antar (1986) for two types of basic flow: Eady baroclinic flow and the rotating
Hadley cell of Antar & Fowlis (1983). Their results showed that in the presence of
weak diffusivity (Ekman number Ek � 0.001), the pure symmetric mode no longer has
the highest growth rate even if Pr = 1. Instead, the most unstable mode is horizontally
tilted through a small angle to the warm side relative to the basic shear. Horizontally
tilted structures with respect to the basic shear were also obtained by Jones & Thorpe
(1992) in their numerical simulations of three-dimensional perturbations initialized
by small-amplitude symmetric modes, although their nonlinear solution did not reach
a steady state and decayed at later time (probably due to the free-slip boundary
conditions used in their hydrostatic model).

To the author’s knowledge, among the previous publications only Miller & Antar
(1986) computed the viscous growth rates for the tilted unstable modes in the Eady
basic state. In their study, however, the viscous growth rates were examined only for
weak diffusivity (Ek � 0.001) and weak instability (with Ri slightly below the critical
value for the symmetric instability). It is not clear how the growth rates will change
when the instability and/or diffusivity become strong. The transitional Richardson
number, Ri∗, computed in their figure 2 implies that their computed viscous growth
rates (with Ek = 0.001) preserve the aforementioned features qualitatively for the
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inviscid growth rates. This means that (i) the viscous growth rates have two local
maxima when the Richardson number is in the vicinity of Ri∗, and (ii) the global
maximum point jumps from one local maximum point to the other as the Richardson
number changes through Ri∗. These features, however, were not examined in detail.
It is also not clear whether and how these features will diminish when the diffusivity
becomes strong (Ek � 0.005). Furthermore, the viscous growth rates were presented in
Miller & Antar (1986) only as one-dimensional functions of the tilt angle. No growth
rate pattern was presented in the two-dimensional space of the horizontal wavelength
and tilt angle. The growth rate pattern may provide useful background information
for studies of general types of instability, such as the growth of non-modal structures
and singular vector perturbations (Farrell & Ioannou 1996; Buizza & Palmer 1995).
It will be interesting to see whether and how the growth rate pattern converges to
the inviscid one as the Ekman number approaches zero. The above problems will be
examined in this paper by using a linearized Boussinesq system of equations with a
parameterized (constant) coefficient of turbulent diffusivity. In particular, the spectral
model of Gu, Xu & Wu (1998) will be modified to allow not only symmetric but also
tilted modes so that it can be used to study the instabilities of baroclinically sheared
flows in three-dimensional space.

According to Gu et al. (1998), in the presence of diffusivity the most unstable
symmetric modes can develop nonlinearly into steady-state circulation bands
(provided the horizontal orientation of the bands is constrained in the direction
of the symmetric axis along the basic shear), but these nonlinear bands are unstable
with respect to four types of normal-mode perturbations in three-dimensional space.
The type I mode is characterized by horizontally tilted modes, similar to the tilted
primary mode obtained by Miller & Antar (1986). This mode may be viewed as
a gradual emergence of the tilted primary mode in three-dimensional space. The
remaining three modes are highly three-dimensional and emerge successively as the
basic-state Richardson number decreases significantly below the critical value. Since
these modes are horizontally more orthogonal than parallel to their parent nonlinear
bands (along the basic shear), they do not resemble the tilted primary mode. Thus,
if the parent circulation is tilted (developed from the tilted primary mode instead
of the symmetric mode), then the type I mode is very likely to disappear but the
remaining three modes may still exist. This speculation has not been verified but
is more relevant to the real-flow instability in three-dimensional space because the
most preferred nonlinear circulation is likely to tilt away from the symmetric axis in
the presence of diffusivity. To verify the above speculation and address the related
issues, it is necessary to study the primary instabilities of baroclinically sheared flows
with respect to tilted modes in three-dimensional space as a first step, and then solve
for tilted nonlinear circulations and examine their stability (or secondary instability)
with respect to three-dimensional perturbations. This first step has also motivated the
current study.

Miller & Antar (1986) and Gu et al. (1998) considered only the fully non-slip
boundary condition in their studies. Emanuel (1979, 1985) used both the free-slip and
non-slip boundary conditions in studies of viscous symmetric instability. He found
that the critical condition for the onset of viscous symmetric instability is moderately
sensitive to the boundary conditions (see figure 2 of Emanuel 1985). As an extension
of viscous symmetric instability, the nearly symmetric instability (associated with the
tilted modes) is expected to be also moderately sensitive to the boundary conditions
(as long as the Ekman number is not too small). Thus, both types of boundary
conditions will be considered in this paper to verify this speculation.
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The effect of turbulent eddy diffusivity can be strong in the atmospheric boundary
layer and in regions of inertial–symmetric instability as observed on the anticyclonic
side of a jet streak (Kennedy & Shapiro 1980; Pepler, Vaughan & Hooper 1998)
or within frontal rainbands (Chapman & Browning 2001). Estimated coefficients of
eddy diffusivity can vary over a wide range, by an order of magnitude from O(10) to
O(102) m2 s−1 in the boundary layer and their orders of magnitudes may also become
larger than O(102) m2 s−1 in regions of symmetric instability (Xu 1988). Thus, the
range of Ekman number (see (2.9) in § 2) considered in this paper will be sufficiently
wide (from 0.0001 to 0.02).

The paper is organized as follows. The model equations and basic-state control
parameters are described in the following section, where the system of equations
is scaled into a proper non-dimensional form with a reduced number of external-
control parameters. The spectral model and method of solution are presented in § 3.
Growth rates of the unstable modes are computed and examined in the horizontal
wavenumber space for wide ranges of external parameters, in § 4 with the free-
slip boundary conditions and in § 5 with the non-slip boundary conditions. Nearly
inviscid growth rates are computed in § 6 and compared with results of previous
studies. Summary remarks follow in § 7.

2. Model equations and control parameters
2.1. Basic state and perturbation equations

The basic state contains a baroclinic flow with a constant vertical shear between two
rigid boundaries, say at z = 0 and H , and the associated potential temperature field
contains a constant gradient in the horizontal as well as in the vertical. This basic
state is the same as that in the classic Eady baroclinic model (Eady 1949). Three-
dimensional perturbations superimposed on the basic state can be expressed by linear
combinations of two-dimensional normal modes. These include both unstable and
stable (neutral or decaying) modes, although only unstable modes will be examined
in this paper.

The y-coordinate is chosen to be along the banded structure of the normal mode
concerned, at an acute angle to the direction of the basic-flow shear. In this coordinate
system, the basic-state flow is expressed by

V ≡ (U, V ) = |V z|(z − 0.5H )(sin α, cosα), (2.1)

where |V z| is the absolute value of the basic shear, H is the depth of the domain,
α is the tilt angle (within ±90◦) of the mode (measured negative clockwise from the
basic-shear direction to the y-direction, that is to the warm side of the basic shear).
The modes concerned satisfy the following linearized Boussinesq system of equations:

(∂t + U∂x)u − f v + w∂zU + ∂xp/ρ0 = µ�u, (2.2a)

(∂t + U∂x)v + f u + w∂zV = µ�v, (2.2b)

(∂t + U∂x)w − b + ∂zp/ρ0 = µ�w, (2.2c)

(∂t + U∂x)b + uS2
1 + vS2

2 + wN 2 = κ�b, (2.2d)

∂xu + ∂zw = 0, (2.2e)

with the free-slip boundary conditions:

w = ∂zu = ∂zv = ∂zb = 0 at z = 0, H, (2.3a)
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or the non-slip boundary conditions:

w = u = v = b = 0 at z = 0, H, (2.3b)

where � ≡ ∂2
x +∂2

z is the Laplacian operator, (u, v, w) are the three components of the
perturbation velocity, p is the perturbation pressure, b ≡ gθ/Θ0 is the perturbation
buoyancy, θ is the potential temperature, g is the gravitational acceleration, Θ0 is a
constant reference potential temperature,

(
S2

1 , S
2
2 , N

2
)

≡ (g/Θ0)(∂x, ∂y, ∂z)Θ (2.4)

are the three components of the constant gradient of the base-state buoyancy (defined
by gΘ/Θ0) and Θ is the base-state potential temperature. Also, µ is the coefficient of
eddy diffusivity for momentum transport, and κ is the coefficient of eddy diffusivity
for heat transport. These two coefficients are assumed to be constant (in the range
from 1 to 200 m2 s−1) in this paper. The horizontal components of the gradient in
(2.4) satisfy the following thermal wind relationship:

S2
1 = f ∂zV = f |V z| cosα, (2.5a)

S2
2 = −f ∂zU = −f |V z| sinα, (2.5b)

where f is the Coriolis parameter (assumed to be constant).

2.2. Basic-state parameters and scaling

The solutions of the above system (2.2)–(2.3) are controlled by the following six
independent external parameters:

(f, N2, |V z|, µ, κ, H ). (2.6)

The tilt angle, α, is an internal parameter for each normal mode concerned. Exact
and approximate similarities exist among the dimensional modes. These similarities
can be revealed by scaling the system (2.2)–(2.3) into a proper non-dimensional form
with a reduced number of external parameters.

In this paper, |V z|H is used for the horizontal velocity scale, Hf for the vertical
velocity scale, 1/f for the time scale, H for the height scale, L ≡ |V z|H/f for the
horizontal length scale which is the Rossby radius of deformation associated with
the basic shear or, equivalently, the radius of inertial oscillation associated with the
horizontal velocity scale, HN2 for the buoyancy scale, and ρ0H

2N2 for the pressure
scale. The system (2.2)–(2.3) can be then scaled into the following non-dimensional
form:

Dtu − v + w sin α + Ri ∂xp = Ek Du, (2.7a)

Dt v + u + w cosα = Ek Dv, (2.7b)

r2Dtw − b + ∂zp = r2Ek Dw, (2.7c)

Dt b + (u cosα − v sin α)/Ri + w = Ek Db/Pr, (2.7d)

∂xu + ∂zw = 0, (2.7e)

with

w = ∂zu = ∂zv = ∂zb = 0 at z = 0, 1, (2.8a)

or

w = u = v = b = 0 at z = 0, 1, (2.8b)
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where Dt ≡ ∂t + (z − 0.5) sin α∂x, D ≡ a2∂2
x + ∂2

z , a ≡ H/L = f/|V z| = r
√

Ri is the
aspect ratio, and

Ri ≡ N 2/|V z|2 the Richardson number, (2.9a)

Ek ≡ µ/(f H 2) the Ekman number, (2.9b)

Pr ≡ µ/κ the Prandtl number, (2.9c)

r ≡ f/N the ratio between inertial and buoyancy frequencies. (2.9d)

The independent variables and perturbation variables in (2.7)–(2.8) are all non-
dimensional but expressed by the same symbols as the dimensional ones in (2.2)–(2.3).
This should not cause confusion since the solutions will be obtained and examined
in their non-dimensional forms in the remainder of this paper.

The non-dimensional solutions of (2.7)–(2.8) are controlled by the four external
parameters in (2.9). The reduction of the number of independent external-control
parameters, from six in (2.6) to four in (2.9), indicates that exact similarities
exist among the dimensional solutions along two-dimensional manifolds defined
by constant values of the four non-dimensional combinations in (2.9) in the six-
dimensional space of the dimensional parameters in (2.6). For the basic state
considered in this paper, we have r2 = f 2/N2 � 0.1 and Ri � 0.25, so the aspect
ratio is small (a = r

√
Ri < 0.2) and the diffusive operator can be approximated

by Ek D ≈ Ek ∂2
z . The smallness of r2 also suggests b ≈ ∂zp in (2.7c), so the solutions

should be nearly hydrostatic and largely independent of r2 (as verified by the solutions
obtained later). Thus, in addition to the above exact similarities, an approximate
similarity exists and the non-dimensional solutions are controlled mainly by three
external parameters: Ri, Ek and Pr.

3. Spectral representation and method of solution
By introducing the streamfunction, ψ , defined by u = ∂zψ and w = −∂xψ , the

five-equation system (2.7)–(2.8) reduces to the following system:

DtDψ + Ri ∂xb − ∂zv = Ek D2ψ, (3.1a)

Dt v + ∂zψ − ∂xψ cos α = Ek Dv, (3.1b)

Dt b + (∂zψ cos α − v sin α)/Ri − ∂xψ = Ek Db/Pr, (3.1d)

with

ψ = ∂2
z ψ = ∂zv = ∂zb = 0 at z = 0, 1, (3.2a)

or

ψ = ∂zψ = v = b = 0 at z = 0, 1, (3.2b)

where (3.1a) is the along-band vorticity equation derived from ∂z(2.7a)−Ri∂x(2.7c) by
eliminating the pressure terms, and the mass continuity equation (2.7e) is automatically
satisfied. Using (3.1)–(3.2), the normal-mode solutions can be obtained conveniently
in three component fields, (ψ , v, b), instead of five component fields, (u, v, w, p, b),
as in the original system (2.7)–(2.8).

Since the y-coordinate is chosen to be along the banded structure of each normal
mode concerned, the structure of the mode is uniform in the y-direction and periodic
in the x-direction. Thus, the solution can be expressed by the following spectral
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expansions:

ψ =

∞∑

n=1

ψngn(z) exp[ikx + (σ − iω)t)], (3.3a)

v =

∞∑

n=0

vnqn(z) exp[ikx + (σ − iω)t)], (3.3b)

b =

∞∑

n=0

bnqn(z) exp[ikx + (σ − iω)t)], (3.3c)

where k (� 0) is the horizontal wavenumber, σ is the growth rate, and ω is the
frequency observed in the coordinate system that moves with the middle-level basic
flow (see (2.1)). Since α, σ and ω can be either positive or negative, here k is assumed
to be non-negative without loss of generality.

For the free-slip case, the two sets of basis functions, gn(z) (n= 1, 2, . . .) and qn(z)
(n= 0, 1, 2, . . .), are given by the eigenfunctions of (∂4

z − λ4
n)gn(z) = 0 and (∂2

z +
γ 2

n )qn(z) = 0 with the free-slip boundary conditions of ∂2
z gn(z) = gn(z) = 0 and

∂zqn(z) = 0 at z =0, 1. It is easy to see that the eigenvalues are given by λn = γn = nπ,
and the eigenfunctions have the following simple forms:

gn(z) = sin(nπz), (3.4a)

qn(z) = cos(nπz). (3.4b)

For the non-slip case, the two sets of basis functions in (3.4) should be replaced by
those in (3.4) of Gu et al. (1998). These non-slip basis functions are still denoted by
gn(z) and qn(z) (n = 1, 2, . . .) but given by the eigenfunctions of (∂4

z − λ4
n)gn(z) = 0

and (∂2
z + γ 2

n )qn(z) = 0 with the non-slip boundary conditions of ∂zgn(z) = gn(z) = 0
and qn(z) = 0 at z = 0, 1. In this case, qn(z) = sin(nπz/H ) as in (3.4b) of Gu
et al. (1998), so q0(z) = 0, that is the zeroth eigenfunction is trivial and should be
removed from the summations in (3.3b) and (3.3c). The above basis functions for
either the free-slip or non-slip case are complete in the sense that they can construct
all the vertical modes for the solutions of (3.1)–(3.2). The normal-mode solutions
expressed by (3.3) are controlled by two internal parameters: k and α. Note that
(k, α) is the polar-coordinate representation of the horizontal vector wavenumber,
(k cos α, k sin α), with respect to the direction of the basic shear. The normal modes
expressed by (3.3) for the entire spectral space of (k cos α, k sin α) are complete in the
sense they can construct any three-dimensional solutions of the linearized Boussinesq
system of equations.

Substituting truncated forms of (3.3) (n up to M) into (3.1) and then projecting the
three resulting equations onto the basis functions gn(z), qn(z) and qn(z), respectively,
we obtain a set of linear algebraic equations for the complex eigenvalue problem in
which (σ − iω) is the complex eigenvalue and the eigenvector is composed of {ψn | n =
1, 2, . . . M} and {(vn, bn) | n = 0, 1, 2, . . .M} for the free-slip case or {(ψn, vn, bn) | n =
1, 2, . . . M} for the non-slip case. A solution obtained from this set of equations can
be substituted into (3.3) to yield a truncated vertical mode (for fixed k and α). Since
the dimension of this set of algebraic equations is 3M +2 for the free-slip case or 3M
for the non-slip case, the number of truncated vertical modes that can be obtained is
3M +2 or 3M . Among these vertical modes, only the most unstable one (that has the
largest growth rate σ for fixed k and α) will be considered. The solutions are found to
converge rapidly as M increases to 12, and become sufficiently accurate when M = 20



188 Q. Xu

as long as the Ekman number is not too small (Ek � 5 × 10−3). Thus, M = 20 is used
for the solutions presented in the next two sections. For the nearly inviscid modes
obtained (with Ek = 10−4) in § 6.2, M = 40 is used to ensure the accuracy of the
solutions.

4. Growth rate pattern and its dependence on external parameters for
free-slip case

4.1. Growth rate pattern

For mid-latitude mesoscale frontal rainbands, the following are typical values for the
dimensional external parameters: f = 10−4 s−1, N 2 = 0.5 × 10−6 s−2, |V z|2 = 10−6 s−2,
H = 104 m, and µ = κ =100 m2 s−1. This yields Ri = 0.5, Ek= 0.01, Pr= 1 and r2 = 0.02
for the non-dimensional parameters in (2.9). We may also choose typical values of
N2 = 0.5 × 10−5 s−2 and |V z|2 = 10−5 s−2 to represent a basic state with relatively
strong vertical stratification and vertical shear. This yields the same non-dimensional
parameter values except that r2 decreases from 0.02 to 0.002. Since the growth rate
pattern changes only slightly when r2 decreases from 0.02 to 0.002 (see § 4.2), we will
simply choose 0.02 as a reference value for r2. With this set of external parameter
values, unstable modes are sought over a wide range in the internal parameter space
(l, α) where l = 2π/k is the horizontal wavelength and α is defined in (2.1).

The computed growth rates are plotted as a function of (l, α) for σ � 0 in
figure 1(a). Note that σ (l, α) is periodic in the α-direction and the plotted pattern
is repeated as α goes beyond ±90◦. Here, the symmetric axis is along α = 0 while
the baroclinic axis is along α = −90◦ or 90◦ (due to the periodicity). As shown in
figure 1(a), unstable modes exist over a broad area extended to the long-wavelength
side except for a narrow strip in the vicinity (mainly on the positive side) of α = 0. The
growth rates are below zero along the symmetric axis, so the basic state is stable with
respect to symmetric perturbations. The main growth rate pattern has two branches
on the two sides of the symmetric axis. These two branches are connected into a single
pattern (banana-shaped for σ � 0.1) in the periodic domain, say over the range of
0◦ � α � 180◦. The maximum growth rate is 0.300 at the point (l, α) = (1.06, −11◦)
in the main growth rate pattern. There is neither a secondary maximum in the main
growth rate pattern nor a local maximum in the side lobe attached to the concave
lower edge of the lower branch of the main growth rate pattern.

Except for the modes within the side lobe, all the unstable modes have zero
frequency (ω = 0), so they do not propagate with respect to the middle-level basic
flow (see (2.1) and (3.3)). Within the side lobe, the growth rate decreases gradually to
zero but the frequency increases nearly linearly from ω = 0 to about ω = 3.0 (not
shown) as the parameter point (l, α) moves downward and leftward away from the
concave lower edge of the main growth rate pattern to the lower-left boundary of the
side lobe. In association with each non-zero ω, there is a pair of conjugate-complex
eigenvalues: σ ± i|ω|. In association with this pair of eigenvalues, the two vertical
modes have the same growth rate and propagate with the same phase speed of |ω|/k

but in opposite directions with respect to the middle-level basic flow.

4.2. Exact and approximate similarities

With the above external parameter values, the scale height is chosen to be H = 104 m,
which is the typical depth of the troposphere. Frontal rainbands, however, are often
shallower or much shallower than the troposphere (Browning, Chapman & Dixon
2001). In view of this, we choose H = h × 104 m, where h is a fraction factor ranging
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Figure 1. (a) Growth rate obtained with the free-slip boundary conditions in (3.2) and plotted
as a function of (l, α) for σ � 0, where l = 2π/k (plotted in logscale) is the wavelength and α
is the tilt angle (within ±90◦) of the mode (measured negative clockwise from the basic-shear
direction to the y-direction, that is to the warm side of basic shear). The external parameter
values are Ri = 0.5,Ek = 0.01,Pr = 1.0 and r2 = 0.02. The global maximum growth rate is
σ = 0.300 at (l, α) = (1.06, −11◦). (b) As in (a) but for Ek = 0.005. The global maximum
growth rate is σ = 0.445 at (l, α) = (0.65, −6◦). (c) As in (a) but for Pr = 2.0. (d) As in (a)
but for Pr = 0.5. (e) As in (a) but for Ri = 1.0. (f ) As in (a) but for Ri = 0.25.

from 0.2 to 1. Also, the eddy diffusivity may be relatively weak for relatively shallow
rainbands, so we choose µ = h2 × 100 m2 s−1 to obtain the same non-dimensional
parameter values as in figure 1(a). For example, the result in figure 1(a) can be
applied to a class of external parameter values generated by different values of h.
As explained in § 2, the exact similarities among the dimensional solutions allow us
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to apply the non-dimensional results obtained in this paper to broad ranges of the
external parameters in dimensional space.

It was also mentioned in § 2 that an additional approximate similarity exists among
the dimensional modes since the non-dimensional solutions are largely independent
of r2 (for r2 � 0.1). This is verified by the growth rates computed for the same Ri =
0.5 and Ek = 0.01 as in figure 1(a) but with different values of r2. For example, when
r2 is doubled from 0.02 to 0.04, the maximum growth rate decreases very slightly
from 0.300 to 0.294 and the maximum point also shifts slightly from (1.06, −11◦)
to (1.129, −12◦). There is almost no visible change in the growth rate pattern (not
shown). When r2 is halved from 0.02 to 0.01, the maximum growth rate increases
slightly from 0.300 to 0.304 and the maximum point shifts slightly from (1.06, −11◦)
to (0.997, −11◦). Again, there is almost no visible change in the growth rate pattern
(not shown). As r2 further decreases, say to 0.001, the maximum growth rate increases
slightly to 0.307, the maximum point has no detectable shift and is still at (0.997,
−11◦), and the growth rate pattern becomes nearly independent of r2. Thus, there is
indeed an approximate similarity between different values of r2. We will only examine
the dependence of the growth rates on (Ek, Pr, Ri) in the remainder of this section.

4.3. Dependence on Ekman number

When the Ekman number is doubled to 0.02 from the value in figure 1(a), the main
growth rate pattern shrinks towards the long-wavelength side and the two branch
‘noses’ retreat from l ≈ 0.5 to l ≈ 1.0 and become slightly further apart from each
other and away from the symmetric axis (not shown). The maximum growth rate
decreases from 0.300 to 0.255, and the maximum point shifts from (1.06, −11◦) to
(2.69, −32◦). When the Ekman number is halved to 0.005, the growth rate pattern
expands and becomes connected across the symmetric axis (see figure 1(b)). The
maximum growth rate increases to 0.445 and the maximum point shifts to (0.65, −6◦).
Also, two local maxima emerge in the growth rate pattern. One is the secondary
maximum of σ = 0.350 at (l, α) = (0.78, 11◦) on the positive-α side of the symmetric
axis in the main growth rate pattern, and the other is the local maximum of σ = 0.06
with ω = 3.02 at (l, α) = (0.418, −32◦) within the side lobe. As in figure 1(a),
the unstable modes in the main growth rate pattern are all non-propagating, while
the unstable modes within the side lobe are all propagating. Clearly, the smaller the
Ekman number becomes, the shorter the wavelength and the closer to the symmetric
axis the horizontal orientation of the most unstable mode. These general features are
also seen from the growth rate patterns obtained with Ek = 0.002, 0.001 and 0.0001
(not shown).

4.4. Dependence on Prandtl number

When the Prandtl number is doubled to 2.0 from the value in figure 1(a), the maximum
growth rate increases from 0.300 to 0.345 and the maximum point shifts slightly from
(1.06, −11◦) to (l, α) = (1.00, −11◦). The lower branch shifts upward slightly across
the symmetric axis and the upper branch shifts downward slightly (figure 1(c)). The
gap between the two branches is thus nearly closed and is filled by a narrow side
lobe over the range 0.5 � l � 2.0 along the symmetric axis. The original side lobe
(attached to the concave lower edge of the main growth rate pattern in figure 1a)
disappears. In comparison with figure 1(a), the overall change of the main growth
rate pattern in figure 1(c) is roughly similar to that in figure 1(b).

When the Prandtl number is halved to 0.5, the maximum growth rate decreases to
0.263 and the maximum point shifts significantly from (1.06, −11◦) to (3.05, −37◦).
In this case, as shown in figure 1(d), the gap between the two branches of the main
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growth rate pattern is widened (to about twice that in figure 1a) over the range
0.5 � l � 2.0, and the side lobe becomes more than twice as large as that in figure 1.
Within the side lobe, the growth rate pattern has a local maximum of σ = 0.063 with
ω = 3.06 at (l, α) = (0.418, −35◦). As explained above, propagating unstable modes
exist only within the side lobe. Note also that the lower branch of the main growth
rate pattern shrinks towards the long-wavelength side and the lower branch ‘nose’
retreats from l ≈ 0.5 to l ≈ 0.8 below the symmetric axis. The overall change of
the main growth rate pattern is somewhat similar to that obtained when the Ekman
number is doubled from Ek = 0.01 to 0.02 (as described in § 4.3).

Note that a doubling of Pr (with Ek fixed) means a halving of κ , while a halving
of Ek (with Pr fixed) means a halving of both µ and κ . When Ek is fixed, the change
of the growth rates with Pr shows partially the effect of κ versus µ and partially the
effect of the overall diffusivity (that is, the combined effect of µ and κ on the growth
rate). This may partly explain why the overall change in the main growth rate pattern
caused by doubling (or halving) Pr from 1.0 to 2.0 (or 0.5) is similar to that caused by
halving (or doubling) Ek from 0.01 to 0.005 (or 0.02). Thus, Ek/

√
Pr = (µκ)1/2/(f H 2)

can be introduced as a modified Ekman number to measure the overall diffusivity.
When Ek/

√
Pr is fixed instead of Ek, the change in the growth rates with Pr is

constrained by the fixed overall diffusivity, so the dependence of the growth rate
pattern on Pr should be reduced in certain respects and this is observed from the
computed growth rate patterns (not shown).

4.5. Dependence on Richardson number

When the Richardson number is doubled to 1.0 from the value in figure 1(a), the
growth rate pattern shifts to the long-wavelength side (see figure 1(e)). The maximum
growth rate decreases from 0.300 to 0.216 and the maximum point shifts dramatically
from (1.06, −11◦) to (5.02, −74◦). When the Richardson number is halved to 0.25,
the growth rate pattern expands towards the short-wavelength side and becomes
connected across the symmetric axis (see figure 1f ). The lower and upper branches
of the main growth rate pattern become very close to the symmetric axis and extend
leftward from l ≈ 0.5 to l ≈ 0.12 and 0.15, respectively. The side lobe is also shifted
with the lower branch to the short-wavelength side. The size and shape of the side lobe
remain roughly the same as in figure 1(a), but a local maximum of σ = 0.116 emerges
at (l, α) = (0.31, −25◦) with ω = 3.11 within the side lobe. The (global) maximum
growth rate increases from 0.300 to 0.79 and the maximum point shifts from (1.06,
−11◦) to (0.37, −4◦). Clearly, the smaller the Richardson number becomes, the shorter
the wavelength and the closer to the symmetric axis the horizontal orientation of the
most unstable mode.

5. Growth rate pattern and its dependence on external parameters
for the non-slip case

As originally intended by Eady (1949), the upper rigid boundary may represent
the effect of the tropopause on the tropospheric flows. However, in the presence of
diffusivity, the Eady basic state cannot be sustained without heat and momentum
fluxes through the upper and lower boundaries. In other words, the basic-state
baroclinic shear needs to be supported by the relative motions of the upper and lower
boundaries while the basic-state potential temperature gradient needs to be supported
by the thermal conductivity at the upper and lower boundaries. This implies that
the boundary conditions should be fully non-slip (that is, thermally conductive and
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kinematically non-slip) for the basic state as well as for the perturbations (see § 2 of
Xu 1987). With the free-slip boundary conditions used in (3.2a), the basic state itself
is not exactly a steady-state solution of the current model, unless it is maintained by
some kind of external forcing (such as a horizontal gradient of radiative heating) not
explicitly described in the current model. The free-slip boundary conditions in (3.2a)
may be more realistic than the non-slip boundary conditions in representing the effect
of the tropopause, but the non-slip boundary conditions should be more realistic in
representing the Earth’s rigid surface. If the non-slip boundary conditions are used
only at the lower boundary, then the basic state still needs to be maintained by some
kind of external forcing. In this case, all the unstable modes will propagate with
respect to the middle-level basic flow and thus the growth rates cannot be compared
with those in the previous results of Miller & Antar (1986). Because of this, as shown
in (3.2b), the non-slip boundary conditions are used at both the lower and upper
boundaries. These non-slip boundary conditions are the same as in Emanuel (1979,
1985), Miller & Antar (1986) and Gu et al. (1998). Thus, the sensitivity of the growth
rates to the boundary conditions can be examined in comparison with results of
Emanuel (see § 5.5), the growth rates obtained with (3.2b) can be precisely compared
to the previous results of Miller & Antar (see § 6.1), and the unstable modes obtained
with (3.2b) can be used for a further study of nonlinear perturbations to verify the
speculation in the introduction based on the results of Gu et al. (1998).

5.1. Growth rate pattern

With the non-slip boundary conditions in (3.2b), growth rates are computed for the
same external parameter values as in figure 1(a) and the pattern is plotted (for σ � 0)
in figure 2(a). As shown, unstable modes exist over a banana-shaped area with l

ranging from 0.37 to 10.0 and α ranging from −153◦ to 1◦ (or, equivalently, from
27◦ to 181◦). The maximum growth rate is 0.246 at (l, α) = (0.93, −12◦). Along the
symmetric axis, the growth rate has a conditional maximum of σ = 0.066 at l = 0.81.
This conditional maximum corresponds to the most unstable symmetric mode and is
much smaller than the global maximum (0.246). The unstable modes on the symmetric
axis are associated with the classic symmetric instability and will be called symmetric
modes; while the unstable modes on the baroclinic axis (α = ±90◦) are associated
with the classic Eady baroclinic instabilities (except for the inclusion of diffusivity)
and will be called baroclinic modes in this paper.

The sensitivity of the growth rates to the type of boundary conditions can be
examined by comparing figure 2(a) with figure 1(a). In figure 2(a), the growth rate
pattern drops below zero on the long-wavelength side, the upper branch retreats
further away from the symmetric axis, and the side lobe disappears. The global
maximum of the growth rate pattern, however, is still quite close to that in figure 1(a).
Thus, the growth rates are moderately sensitive to the boundary conditions.

5.2. Exact and approximate similarities

The same types of exact and approximate similarities exist for the non-slip case as
explained for the free-slip case in § 4.2. The approximate similarity is verified by the
growth rate patterns computed with r2 varying over a wide range of values. For
example, when r2 is doubled from 0.02 to 0.04, the maximum growth rate decreases
slightly from 0.246 to 0.240 and the maximum point shifts also slightly from (0.93,
−12◦) to (0.96, −12◦). There is almost no change in the growth rate pattern (not
shown). When r2 is halved from 0.02 to 0.01, the maximum growth rate increases
slightly from 0.246 to 0.250 and the maximum point shifts slightly from (0.93, −12◦)
to (0.90, −11◦). As r2 further decreases, say to 0.001, the maximum growth rate
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Figure 2. Growth rate obtained for the same external parameter values as in figure 1(a) but
with the non-slip boundary conditions in (3.2b). The global maximum is at (l, α) = (0.93, −12◦).
(b) As in (a) but for Ek = 0.005. (c) As in (a) but for Ri = 1.0. (d) As in (a) but for Ri = 0.25.

increases slightly to 0.253, the maximum point shifts slightly to (0.88, −11◦), and the
growth rate pattern becomes nearly independent of r2.

5.3. Dependence on Ekman number

When the Ekman number is doubled to 0.02, the growth rate pattern shrinks, the
lower branch detaches from the symmetric axis, and the upper branch retreats
upward across the baroclinic axis to α = 93◦ (not shown). The maximum growth rate
decreases from 0.246 to 0.135 and the maximum point shifts from (0.93, −12◦) to
(1.19, −21◦). When the Ekman number is halved to 0.005, the growth rate pattern
expands and becomes connected in the α-direction (figure 2(b)). The maximum
growth rate increases to 0.398 and the maximum point shifts to (0.60, −5◦). Clearly,
the smaller the Ekman number becomes, the shorter the wavelength and the closer
to the symmetric axis the horizontal orientation of the most unstable mode. The
unstable modes in figure 2(b) are mostly non-propagating (with ω = 0), except for
those in the small side lobe attached to the lower edge of the main growth rate pattern
around (l, α) = (0.6, −20◦) in figure 2(b). In this small side lobe, ω is very close, but
not identical, to zero. By comparing figure 2(b) with figure 1(b), we can see that the
growth rates are moderately sensitive to the boundary conditions.

5.4. Dependence on Prandtl number

When the Prandtl number is doubled to 2.0, the maximum growth rate increases
slightly to 0.248 and the maximum point shifts slightly to (0.88, −11◦), but the growth
rate pattern expands and becomes connected across the symmetric axis (not shown).
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The change of the overall growth rate pattern is roughly similar to that in figure 2(b).
When the Prandtl number is halved from 1.0 to 0.5, the maximum growth rate
increases from 0.246 to 0.261, the maximum point shifts from (0.93, −12◦) to (0.94,
−13◦), the upper branch of the growth rate pattern retreats upward from α = 27◦

to about 50◦, and a side lobe emerges underneath the concave lower edge of the
main growth rate pattern (not shown). The overall change of the main growth rate
pattern caused by doubling (or halving) Pr is similar to that caused by halving (or
doubling) Ek. This rough similarity may be partially explained in the same way as
for the free-slip case in § 4.4. When Ek/

√
Pr is fixed instead of Ek, the dependence

of the growth rate pattern on Pr is reduced (see the comparisons of the dashed and
dotted curves in figure 5 with those in figure 10 of Miller & Antar 1986).

5.5. Dependence on Richardson number

When the Richardson number is doubled to 1.0, the growth rate pattern shrinks toward
the long-wavelength side and away from the symmetric axis (see figure 2(c)). The
maximum growth rate decreases from 0.246 to 0.106 and the maximum point shifts
from (0.93, −12◦) to (3.13, −47◦). When the Richardson number is halved to Ri = 0.25,
the growth rate pattern expands and becomes connected across the symmetric axis
(see figure 2d). The maximum growth rate increases to 0.69 and the maximum point
shifts to (0.35, −4◦). Clearly, the smaller the Richardson number becomes, the shorter
the wavelength and the closer to the symmetric axis the horizontal orientation of the
most unstable mode.

By comparing figure 2(c, d) with figure 1(e, f ), we can see again that the growth
rates are moderately sensitive to the boundary conditions. This and the above
comparisons of the growth rates obtained with the two types of boundary conditions
are qualitatively consistent with the results obtained by Emanuel (1979, 1985) for
the onset of viscous symmetric instability. As an extension of viscous symmetric
instability, the nearly symmetric instability (associated with the tilted modes) is also
moderately sensitive to the boundary conditions (as long as the Ekman number is in
the range 0.005 � Ek � 0.02).

6. Comparisons with previous results for nearly inviscid and inviscid cases
As mentioned in the introduction, when the Richardson number is in the range

1 > Ri > 0.84, the inviscid growth rate pattern has two local maxima. One is the
symmetric local maximum at (l, α) = (0, 0) or (k cos α, k sin α) = (∞, 0) while the
other is the baroclinic local maximum on the baroclinic axis defined by α = ±90◦

or k cos α = 0. The global maximum is the symmetric one if Ri∗ > Ri > 0.84, and
the baroclinic one if 1 > Ri > Ri∗, where Ri∗ = 0.95 is the transitional Richardson
number. As the Richardson number changes through Ri∗, the global maximum point
jumps from one local maximum point to the other in the space of the horizontal
wavenumber (k cos α, k sin α) or in the space of (l, α). These features, however, are not
seen from the viscous growth rates obtained with Ek � 0.005 in the previous sections.
Thus, the growth rate patterns change not only quantitatively but also qualitatively
when Ek increases from zero to 0.005 for both the free-slip and non-slip cases. This
addresses only the first of the questions raised in the introduction. The remaining
questions concern whether and how the viscous growth rate pattern (obtained for
a given set of external parameters) will converge to the inviscid one as the Ekman
number decreases towards zero. To address these questions, we will first reduce Ek to
0.001 and compare with results from Miller & Antar (1986) for the non-slip case in



Baroclinic instabilities in the presence of diffusivity. Part 1 195

0.1 0.2 0.5 1.0 2.0 5.0 20.0 50.0
–90

–60

–30

0

30

60

90
(a)

α

l
0.1 0.2 0.5 1.0 2.0 5.0 20.0 50.0

–90

–60

–30

0

30

60

90
(b)

l

Figure 3. Growth rate σ (a) and frequency ω (b) plotted as functions of (l, α) for σ � 0 for
the non-slip case. The external parameter values are as in figure 2(a) except that Ek = 0.001.
The maximum growth rate is 0.736 and the maximum point is at (l, α) = (0.347, −0.29◦).

§ 6.1 and, then, further reduce Ek to 0.0001 and compare with the inviscid results of
Stone (1970) in § 6.2.

6.1. Comparisons with nearly inviscid results of Miller & Antar

The four non-dimensional external parameters used in Miller & Antar (1986) are:
Ri, Ek, Pr and Ro, where the first three parameters are the same as ours in (2.9a)–
(2.9c) and the last is the shear Rossby number defined by Ro ≡ |V z|/f . Note that
Ro = 1/(r

√
Ri) = L/H = 1/a, so Ro is also the inverse of the aspect ratio defined in

this paper. As shown in § § 4 and 5 the non-dimensional modes are nearly independent
of r but strongly dependent on Ri. This implies that the non-dimensional modes are
dependent on Ro through the relationship Ro = 1/(r

√
Ri). Thus, using r instead

of Ro as the last external parameter simplifies the problem studied here. Since the
horizontal length scale was chosen to be the same as the height scale in Miller &
Antar (1986), Ro = L/H is the ratio between the two horizontal length scales used
here and in their study. This ratio needs to be considered when the wavelengths are
compared. The time scale used here is the same as theirs, so the non-dimensional
growth rates can be compared directly.

In this section, Ek is reduced to 0.001 to match the Ekman number used by Miller
& Antar (1986). Recall that Ek = 0.005 in figure 1(b). When this value is reduced by a
factor 5 to Ek = 0.001, the growth rate pattern becomes nearly symmetric with respect
to the symmetric axis (figure 3a) and propagating unstable modes (with ω �= 0) emerge
in the two side lobes attached to the lower and upper edges of the main growth rate
pattern (figure 3b). The maximum growth rate increases to 0.736 and the maximum
point moves to (0.347, −0.29◦). The main growth rate pattern becomes very close to
the inviscid one.

Miller & Antar (1986) sought the conditional maximum growth rates with l varied
but α fixed. The results were plotted as functions of α in their figure 4 for Pr =
1, Ro = 20, Ek = 0.001, Ri = 0.8 and 0.92. Note that r2 = 1/(Ro2Ri), so Ro =20
is equivalent to r2 = 0.0025/Ri. This relationship is used to set the parameters in
figures 4(a) and 4(b) corresponding to their figures 4(c) and 4(a), respectively. Along
the ridge of the growth rate topography in figure 4(a) or figure 4(b) one can see
how the conditional maximum growth rate σ and associated wavelength l change as
functions of α. The conditional maximum growth rate obtained from figure 4(a) is
plotted as the upper solid curve in figure 5. This curve has the same shape as that
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Figure 4. As in figure 3(a) except that Ri = 0.8 and r2 = 0.0025/Ri. (b) As in (a) except
that Ri = 0.92.
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Figure 5. Conditional maximum growth rates for the non-slip case, plotted as functions of
α for Ri = 0.8 and Pr = 1 (upper solid curve), Ri = 0.92 and Pr = 1 (lower solid curve),
Ri = Ri∗ = 0.84 and Pr = 1 (middle solid curve), Ri = 0.92 and Pr = 2.0 (dashed curve), and
Ri = 0.92 and Pr = 0.5 (dotted curve) with r2 = 0.0025/Ri and fixed Ek/

√
Pr = 0.001.

in figure 4(c) of Miller & Antar (1986), but with only 1/4 the amplitude. When the
results are further compared with the analytically obtained inviscid growth rates for
the symmetric mode (σ = 0.38 at α = 0 and l = 0.50) and baroclinic mode (σ = 0.22
for l = 4.7), it appears that the growth rate in their figure 4(c) was not correctly
scaled and should be reduced by a factor 4.

By comparing figure 4(a) and figure 3(a), one can see how the growth rate pattern
changes as the Richardson number increases from 0.5 to 0.8. (Note that r2Ri = 0.01 in
figure 3(a) and decreases to 0.0025 in figure 4(a), but this causes almost no change in
the growth rate pattern). The major changes caused by the increase of the Richardson
number are as follows: (i) the two side lobes are diminished; (ii) the main growth
rate pattern is shifted to the long-wavelength side while the maximum growth rate is
decreased from 0.736 to 0.249 and the maximum point is moved from (0.347, −0.29◦)
to (0.535, −2.1◦).
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Figure 4(b) shows how the growth rate pattern changes as the Richardson number
increases further from 0.8 to 0.92 with r2Ri = 0.0025 fixed. The major changes
compared to figure 4(a) are as follows: (i) the upper side lobe has completely
disappeared and the lower side lobe is further reduced; (ii) the V-shape ridge has
collapsed into a ‘canyon’ (with σ < 0) along the symmetric axis. In this case, although
the maximum growth rate decreases only slightly from 0.249 to 0.188, the maximum
point jumps from (0.535, −2.1◦) to (5.02, 89◦). The conditional maximum growth rate
is plotted as the lower solid curve in figure 5. This curve has the same shape as that
in figure 4(a) of Miller & Antar (1986) (although the amplitudes are different by
a factor 4 for the same reason mentioned earlier). Multiplied by the ratio between
the two horizontal length scales (Ro = L/H = 20), the associated wavelength (not
shown) is found to be the same as that in figure 4(b) of Miller & Antar (1986).

The jump of the maximum growth rate point in response to the increase of Ri
from 0.8 in figure 4(a) to 0.92 in figure 4(b) implies the existence of a transitional
Richardson number (within the range 0.8 < Ri ∗ < 0.92). When Ri is in the vicinity of
Ri∗, the growth rate pattern has two local maxima. The global maximum jumps from
one local maximum to the other as Ri increases through Ri∗. Miller & Antar (1986)
plotted Ri∗ as a function of Ro for Pr = 1.0 and Ek = 0.001 in their figure 2, showing
that Ri∗ is nearly constant (Ri∗ = 0.84) when Ro � 7.5. Note that the latter condition
(Ro � 7.5) is equivalent to r2 = (Ro2Ri∗)−1 � (47.25)−1 < 0.02, so Ri∗ is nearly
constant for the entire range of r2 considered in this paper. When Ri = Ri∗(= 0.84),
the growth rate pattern (not shown) has two local maxima with the same growth rate
of σ = 0.194. These two local maxima are located near the symmetric and baroclinic
axes, respectively. As shown by the conditional maximum growth rate (middle solid
curve) in figure 5, one local maximum is at α = −4◦ and the other is very flat over
the range −120◦α < −70◦ (or, equivalently, 60◦ < α � 110◦). The growth rate pattern
is found to have two local maxima only when the Richardson number is in the range
0.845 > Ri > 0.82 (with Ek = 0.001). This range is much smaller than the range
1 > Ri > 0.84 for the coexistence of two local maxima in the inviscid case.

In their figure 6(a), Miller & Antar (1986) plotted the growth rate as a function of
α at the critical Richardson number (Ri = 0.926) and wavelength (l = 13.2H/L =
13.2/Ro = 0.66) for the symmetric instability with Pr = 1.0, Ro = 20 and Ek = 0.001.
Their growth rate curve showed two peaks on the two sides of α = 0 in the range
−8◦ < α < 8◦ (but the negative growth rates over the range 0 � α � 1◦ could not be
computed by their time-integration technique). This double-peak distribution indicates
that the tilted modes are unstable while the symmetric mode is marginally unstable,
so the tilted modes are more unstable than the symmetric mode. The double-peak
distribution can be compared with the growth rate distribution along the vertical line
of l = 0.66 between −8◦ � α � 8◦ in figure 4(b). A detailed comparison (not shown)
indicates that the two growth rate distributions have the same shape.

The dashed curve (dotted curve) in figure 5 shows how the conditional maximum
growth rate changes from the lower solid curve (for Ri = 0.92) when Pr is doubled
to 2.0 (halved to 0.5) with the modified Ekman number Ek/

√
Pr fixed. In the vicinity

of α = 0, the major change is an up-leftward (down-rightward) shift of the V-shape
profile in response to the increase (decrease) of Pr. In comparison with the profiles
of the conditional maximum growth rates obtained in figure 10 of Miller & Antar
(1986) for Pr = 2.0 and 0.5 but with Ek fixed, the above changes are quite small.
Thus, the growth rate pattern becomes less dependent on Pr when Ek/

√
Pr is fixed

than when Ek is fixed. This is consistent with the results in § 5.4 for the same reason
as given in § 4.4.
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6.2. Comparisons with Stone’s inviscid results

As manifested by the continuous dependence of the growth rate on α, the nearly
symmetric and nearly baroclinic instabilities studied in this paper are continuous
extensions of the viscous symmetric instability. According to McIntyre (1970), the
viscous symmetric instability does not converge to the classic inviscid symme-
tric instability in the limit of vanishing Ekman number unless Pr= 1. The nearly
symmetric and nearly baroclinic instabilities are continuous extensions of the viscous
symmetric instability, so they must also not converge to the inviscid instabilities
studied by Stone (1970) unless Pr= 1. This speculation is verified numerically by
the solutions of the spectral model used in this paper. In particular, it is found (but
not shown here) that the growth rate pattern computed with Pr = 0.5 or 2 does not
converge to the inviscid results of Stone (1970) as Ek becomes infinitely small. Thus,
Pr will be fixed at unity while Ek is further reduced (to 0.0001) for the comparisons
with Stone’s inviscid results in this section.

When the Ekman number is reduced to 0.0001 from the value of 0.001 in figure 3,
the growth rate pattern and associated frequency pattern become almost symmetric
with respect to the symmetric axis (see figure 1 of Part 2, Xu 2003). The main growth
rate pattern (for the non-propagating modes) remains largely the same as that in
figure 3, but the maximum growth rate increases from 0.736 to 0.913 (which is very
close to its inviscid limit), the maximum point moves from (0.347, −0.29◦) to (0.186,
−0.005◦), and the two side lobes (for the propagating modes) become about three
times as large as those in figure 3. A similar but slightly more rapid convergence to the
inviscid limit is seen for the free-slip case. Because of this, we only need to compare
the growth rates obtained with the non-slip boundary conditions with Stone’s inviscid
results in this section.

The time scale and length scales used in this paper are the same as in Stone (1970),
so the results can be compared directly. The growth rates obtained for Ri = 0.5 and
Ek = 0.0001 are plotted in figure 6(a) as functions of k sin α for different values of
k cos α in the same way as in figure 4 of Stone (1970). The growth rates in figure 6(a)
are very close to the inviscid growth rates in figure 4 of Stone (1970), and the
differences are nearly imperceptible except for the propagating modes (with ω �= 0)
over the outer range of |k sin α| > 2.0 (see figure 6b). The non-propagating modes
(with ω = 0) are mostly in the inner range of |k sin α| � 2, while the propagating
modes are over the outer range of |k sin α| > 1. As defined in (3.3), ω is the frequency
relative to the middle-level basic flow. The frequency plotted for k cos α = 15 in
figure 6 of Stone (1970) was defined relative to the bottom-level basic flow at z = 0,
so it corresponds to 0.5k sin α + ω in this paper. When 0.5k sin α is added to ω in
figure 6(b), the frequency curve for k cos α = 15 becomes essentially the same as the
inviscid one in figure 6 of Stone (1970).

As the Ekman number increases from Ek = 0.0001 to 0.001 (not shown), the growth
rate curves (mainly for k cos α � 6) become slightly flatter than those in figure 6(a).
As the Ekman number further increases to 0.005 (figure 7a) and 0.01 (figure 7b), the
growth rate curves decrease significantly and become increasingly asymmetric with
respect to the point k sin α = 0. The growth rates on the positive side of k sin α are
suppressed by the diffusivity much more severely than on the negative side, especially
when k cos α is large. This must be caused by the difference in the vertical structures
between the two modes with opposite signs of k sin α (see (2.6)–(2.9) of Stone (1970)
for the analytical expression for the inviscid vertical velocity). Detailed analyses of the
mode structures and related differences will be given in Part 2 (Xu 2003). Note that
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Figure 6. Growth rates (a) and frequencies (b) plotted as functions of k sin α for k cos α = 0,
2, 4, 6, 8, 10 and 15 for the non-slip case. The external parameter values are as in figure 2(a)
except that Ek = 0.0001. The growth rate curves are plotted in the same way as in figure 4 of
Stone (1970) to facilitate comparisons.

the growth rate and frequency curves for k cosα = 0 are always symmetric, as shown
in figures 6 and 7, because the positive (k sin α > 0) and negative (k sin α < 0) parts
of the baroclinic axis (k cos α = 0) correspond to the two axes defined by α = 90◦

and α = −90◦, respectively, in the (l, α) space and these two axes are equivalent as
explained earlier.

When the Richardson number increases from Ri = 0.5 to 1.0, the growth rates
decrease dramatically from those in figure 6(a). As shown in figure 8, the growth rates
are very close to the inviscid ones in figure 2 of Stone (1970). In particular, the growth
rate curve for k cos α = 0 is very close to that for the classic Eady instability. The
above comparisons show that the viscous growth rate patterns (with Pr =1) converge
to the inviscid ones obtained by Stone (1970) in the limit of Ek → 0. When Ek is
reduced to 0.0001, the unstable modes and growth rates become nearly inviscid.

Nearly inviscid growth rate patterns (with Ek = 0.0001) are computed and examined
for different values of the Richardson number over the range 1 � Ri � 0.25. The
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Figure 7. (a) As in figure 6(a) except that Ek = 0.005. (b) As in (a) except that Ek = 0.01.
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Figure 8. Growth rates plotted as functions of k sin α for k cosα = 0, 2, 4, 6, 8 and 10 for
the non-slip case. The external parameter values are as in figure 6 except that Ri = 1.0. The
growth rate curves are plotted in the same way as in figure 2 of Stone (1970).
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Figure 9. Growth rates plotted in the wavenumber space (k cosα, k sin α) for σ � 0 for the
non-slip case. The external parameter values are as in figure 2(a) except that Ek = 0.0001 and
Ri = Ri∗ = 0.913.

main results can be summarized as follows:
(i) The growth rate pattern has two local maxima when 0.92 > Ri > 0.82 (note

that this range is smaller than 1 > Ri > 0.84 for the coexistence of two local maxima
in the inviscid case). The two local maxima are located very close to (but not exactly
on) the symmetric axis (k sin α = 0) and baroclinic axis (k cos α = 0), respectively.

(ii) The largest growth rate is associated with the nearly symmetric mode if 0.913 �
Ri > 0.82, and with the nearly baroclinic mode if 0.92 > Ri > 0.913, so the transitional
Richardson number is Ri∗ = 0.913 (for Ek = 0.0001 and Pr = 1).

(iii) When the Richardson number becomes smaller than 0.82, the local maximum
associated with the nearly baroclinic mode degenerates into a saddle point and only
one maximum exists in association with a nearly symmetric mode.

(iv) When the Richardson number becomes larger than 0.92, the local maximum
associated with the nearly symmetric mode diminishes and only one maximum exists
in association with a nearly baroclinic mode.

The nearly inviscid growth rate pattern for Ri = Ri∗ = 0.913 is plotted in figure 9.
As shown, the growth rate pattern has two local maxima with the same growth rate
(σ = 0.24): one is located at (k cos α, k sin α) = (22.8, −0.00014) which is very close
to the symmetric axis, while the other is located at (k cosα, k sin α) = (0.0002, −1.2)
which is very close to the baroclinic axis, and the growth rate (σ = 0.24) is virtually
the same as its inviscid limit (σ = 0.24 at k = 1.2 and α = ±90◦). The unstable
modes are non-propagating in the main growth rate pattern but become propagating
in the two side lobes attached to the concave upper and lower edges of the main
growth rate pattern in figure 9. Since all the growth rate patterns are periodic in the
α-direction and the period is 180◦ in the (l, α) space, the growth rate pattern in figure
9 can be extended to the left half-plane of the wavenumber space by a 180◦-rotation
with respect to the origin.

The maximum growth rate and associated wavelength and tilt angle are plotted as
functions of Ri for Ek = 0.0001 by the solid curves in figure 10(a−c). In each figure,
the solid curve over the range 0.92 � Ri � 0.25 is associated with the nearly symmetric
instability, while the solid curve over the range 1 � Ri � 0.82 is associated with the
nearly baroclinic instability. The two curves coexist over the range 0.92 � Ri � 0.82
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Figure 10. Maximum growth rate (a), associated wavelength (b) and tilt angle (c) as functions
of Ri for Ek = 0.0001 (solid), 0.001 (dashed), 0.0025 (dash-dotted) and 0.005 (dotted) with
the non-slip boundary conditions. In (b) and (c), the doubled dash-dotted curves over
0.78 � Ri � 0.85 indicate that the maximum of σ is locally flat in the (l, α) space when
Ek = 0.0025 and Ri is between 0.78 and 0.85.
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and so do the two types of instability. At the transitional Richardson number
(Ri∗ = 0.913), the two local maximum growth rates become equal and thus the two
solid curves intersect, as shown in figure 10(a). The two solid curves in figures 10(b) and
10(c) are far apart from each other and their vertical distances apart at Ri∗ = 0.913
quantify the jump of the global maximum for one local maximum to the other in the
(l, α) space. These solid curves are very close to the inviscid limits (not shown but
described at the beginning of § 6).

Similar functions are plotted by the dashed curves for Ek= 0.001, by the dash-dotted
curves for Ek = 0.0025, and by the dotted curves for Ek = 0.005 in figure 10(a−c).
From these curves, we can see how the maximum growth rate and associated
wavelength and tilt angle change with Ri and Ek. As Ek increases to 0.0025, the
range of Ri for the coexistence of two local maxima diminishes gradually and the
transitional Richardson number decrease from Ri∗ = 0.95 to 0.785.

7. Summary remarks
In this paper, the spectral model of Gu et al. (1998) is extended and used to study

the instabilities of baroclinically sheared Eady basic flows in three-dimensional space
in the presence of diffusivity with two (free-slip and non-slip) types of boundary
conditions. The non-dimensional solutions are controlled by four independent
external parameters or four non-dimensional combinations of six dimensional external
parameters (see (2.6)). The combinations can be selected in different ways which lead
to different selections of external parameters. The parameters selected in this paper
(see (2.9)) have the merit of reducing the number of the external-control parameters
(see § § 4.2 and 5.2), so the normal-mode solutions are mainly controlled by three
external parameters: the Richardson number, the Ekman number and the Prandtl
number. The dependence of the growth rate pattern (but not the maximum growth
rate) on the Prandtl number may be reduced by fixing the modified Ekman number
(defined by Ek/

√
Pr) instead of fixing the Ekman number itself (see § § 4.4 and 5.4).

This modified Ekman number measures the combined effect of µ and κ on the growth
rates.

Growth rate patterns are computed for unstable modes as functions of (l, α), where
l is the horizontal wavelength and α is the tilt angle of the horizontal orientation
of the banded structure of the mode with respect to the basic shear. The growth
rate patterns are examined for wide ranges of the three external-control parameters
with both (free-slip and non-slip) types of boundary conditions. It is found in general
that as long as the Ekman number is not very small, the main growth rate pattern
(for non-propagating modes) has only one maximum. When the Richardson number
increases from 0.25 to 1.0, the maximum growth rate decreases and the associated
instability changes gradually from a nearly symmetric type to a nearly baroclinic type.
In this sense, the nearly symmetric and nearly baroclinic instabilities studied in this
paper fill the gap between the two classic instabilities: the baroclinic instability and
the symmetric instability, ranging from synoptic scale to mesoscale. Clearly, in the
presence of moderate diffusivity (Ek > 0.0025), the gradual change of instability in
response to the continuous increase of the Richardson number is very different from
the inviscid results of Stone (1966, 1970).

The growth rate patterns are found to be moderately sensitive to the type of
boundary conditions unless the Ekman number is very small. When the Ekman
number is very small (Ek � 0.001) and the Richardson number is between 0.25 and
the transitional Richardson number (Ri∗ = 0.95 in the inviscid limit), the growth rate
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pattern is characterized in general by a V-shape ridge with two branches split from
a main ridge along the two sides of the symmetric axis (figures 3 and 4(a)). As the
Ekman number increases (say to Ek = 0.01), the main ridge collapses and the global
maximum point moves along the negative-α branch while the positive-α branch goes
below zero for the non-slip case but not for the free-slip case (figures 1(a) and 2(a)).
In general, the growth rate pattern obtained with the free-slip boundary conditions
has a slightly larger global maximum and is more symmetric with respect to the
symmetric axis than that obtained with the non-slip boundary conditions for any
given set of external-control parameter values in the ranges considered in this paper.

The nearly symmetric modes and nearly baroclinic modes are mixed baroclinic–
symmetric modes of instability, that could not be represented in the classic models
because they did allow them. Their instability mechanisms are largely unexplored,
although the energy conversions of nearly symmetric modes with weak diffusivity and
weak instability were examined by Miller & Antar (1986). To physically understand
and interpret the major changes in the growth rate patterns caused by the presence of
diffusivity and major differences caused by the boundary conditions, described above,
it is necessary to analyse the mode structures and related energetics, and this will be
performed in Part 2 of the study (Xu 2003).

The author is grateful to Drs Wei Gu and Ting Lei for developing the spectral
model. The work was partially supported by the NSF Grant ATM-9983077 to the
University of Oklahoma. Comments and suggestions from Dr Douglas Lilly and
anonymous reviewers improved the presentation of the results.
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